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Q1 Let f be a Riemann integrable function defined on [a, b].

(a) Show that the square function f2 is also integrable function on [a, b].

Proof. Since f ∈ R[a, b] , there exists M > 0 such that

|f(x)| ≤M ,∀x ∈ [a, b].

Let ε > 0 , there exists δ > 0 such that for all partition P : a = x1 < x2 < ... <
xn+1 = b at which ||P || < δ , we have

U(f, P )− L(f, P ) =

n∑
i=1

wi(f)∆xi <
ε

2M

where wi(f) = sup{|f(x)− f(y)| : x, y ∈ [xi, xi+1]}.

Noted that wi(f) = sup{|f(x) − f(y)| : x, y ∈ [xi, xi+1]}=sup{f(x) − f(y) : x, y ∈
[xi, xi+1]}. For all x, y ∈ [xi, xi+1],

f(x)− f(y) ≤ sup{f(a)− f(b) : a, b ∈ [xi, xi+1]}
f(y)− f(x) ≤ sup{f(a)− f(b) : a, b ∈ [xi, xi+1]}

Thus,

sup{|f(x)− f(y)| : x, y ∈ [xi, xi+1]} ≤ sup{f(x)− f(y) : x, y ∈ [xi, xi+1]}.

On the other hand,

f(x)− f(y) ≤ sup{|f(a)− f(b)| : a, b ∈ [xi, xi+1]} ∀x, y ∈ [xi, xi+1].

So, wi(f) = sup{|f(x)− f(y)| : x, y ∈ [xi, xi+1]}=sup{f(x)− f(y) : x, y ∈ [xi, xi+1]}.

On each [xi, xi+1], for all x, y ∈ [xi, xi+1] ,

|f2(x)− f2(y)| ≤ |f(x) + f(y)||f(x)− f(y)| ≤ 2Mwi(f).

Thus, wi(f
2) ≤ 2Mwi(f) for all i = 1, 2, ...n. So there exists δ > 0 such that for all

partition P : a = x1 < x2 < ... < xn+1 = b at which ||P || < δ , we have

U(f2, P )− L(f2, P ) =

n∑
i=1

wi(f
2)∆xi < 2M

n∑
i=1

wi(f)∆xi < ε.

(b) Show that if there exists δ > 0 such that |f | ≥ δ, then
√
|f | is integrable.
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Proof. Let ε > 0. Since f ∈ R[a, b], there exists partition P such that

U(f, P )− L(f, P ) =

n∑
i=1

wi(f)∆xi < 2
√
δε.

On each [xi, xi+1], for any x, y ∈ [xi, xi+1],

|
√
|f(x)| −

√
|f(y)|| ≤ |f(x)− f(y)|√

|f(y)|+
√
|f(x)|

≤ 1

2
√
δ
wi(f).

Thus,

U(
√
|f |, P )− L(

√
|f |, P ) =

n∑
i=1

wi(
√
|f |)∆xi

<
1

2
√
δ

n∑
i=1

wi(f)∆xi < ε.

Q2 Determine whether the following improper integrals exist:

(a)
∫ 1
0 sinx/

√
x3 dx

Proof. The integral exists. We prove our claim using cauchy criterion. Let ε > 0,

there exists δ =
ε2

4
> 0 such that for all b > a and a, b ∈ (0, δ) ∩ [0, 1],

∣∣∣∣∫ b

a

sinx√
x3

dx

∣∣∣∣ ≤ ∫ b

a

1√
x
dx

= 2
√
b− 2

√
a < 2

√
δ = ε.

The first inequality follows from the fact that sinx ≤ x for all x ≥ 0.

(b)
∫∞
1 log x/

√
x5 dx

Proof. The integral exists. We prove our claim using comparsion test. Since log x ≤ x
for all x ≥ 1, we have

0 ≤ log x√
x5
≤ 1√

x3
, ∀x ≥ 1.

It remains to check that

∫ ∞
1

1√
x3

exists. For all p > 1,

∫ p

1

1√
x3

= 2

(
1− 1
√
p

)
→ 2 as p→∞.

Q3 Let f be a function defined on (−c, c) for some c > 0.

(a) If |f(x)| ≤ |x|α for some α > 1, show that f ′(0) exists and find it.
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Proof. Since |f(x)| ≤ |x|α for some α > 1, we have f(0) = 0. Let ε > 0, there exists

δ = ε
1

α−1 > 0 such that for all 0 < |x| < δ,∣∣∣∣f(x)− f(0)

x

∣∣∣∣ = |f(x)

x
| ≤ |x|α−1 < δα−1 = ε.

Thus f ′(0) exists and equals to 0.

(b) Does part (a) hold when α = 1?
Ans: No. Take f(x) = |x|. The assumption clearly holds. But f is not differentiable
at x = 0.

Q4 Let f : R→ R be a differentiable function. Suppose that a < b and f ′(a) < f ′(b).

(a) Show that if f ′(a) < λ < f ′(b), then there exists c ∈ (a, b) such that f ′(c) = λ.

Proof. Define g : [a, b] → R by g(x) = f(x) − λx. g is differentiable on [a, b] and
g′(x) = f ′(x) − λ for all x ∈ [a, b]. Since g is differentiable, so g is continuous. By
Max-Min theorem, there exists c ∈ [a, b] such that g(c) ≤ g(x) for all x ∈ [a, b].
Since g′(a) < 0, there exists δ > 0 such that for all x ∈ (a, a+ δ),

g(x)− g(a)

x− a
< 0 =⇒ g(x) < g(a).

Similarly, there exists δ > 0 such that for all x ∈ (b− δ, b),
g(b)− g(x)

b− x
> 0 =⇒ g(x) < g(b).

Thus c ∈ (a, b). Argue as above, we can deduce that g′(c) can’t be positive or negative.
Thus, g′(c) = 0 which implies f ′(c) = λ.

(b) By using part (a) or otherwise, show that if f ′(x) is increasing on (a, b), then f ′ is
continuous on (a, b).

Proof. Since f ′ is increasing, limx→c+ f
′(x) and limx→c− f

′(x) exists for all c ∈ (a, b).

One may verify this using sequential criterion. Let {xn} be a sequence of real num-
bers such that xn > c and limn xn = c. Since f ′ is increasing, {f ′(xn)} converges by
monotone convergence theorem. Thus, the limit is unique. The existence of left hand
limit is proved analogously.

By the monotonic increasing property of f ′, we have

lim
x→c+

f ′(x) ≥ f ′(c) ≥ lim
x→c−

f ′(x) for all c ∈ (a, b).

Assume limx→c+ f
′(x) = α > f ′(c) for some c ∈ (a, b). By the definition of limit,

there exists δ > 0 such that for all x ∈ (c, c+ δ),

f ′(c) <
f ′(c) + α

2
< f ′(x).

By result of (a), there exists d ∈ (c, c+ δ) such that

f ′(d) =
f ′(c) + α

2
.

Contradiction arised. So, limx→c+ f
′(x) = f ′(c) ,∀c ∈ (a, b). Similarly, limx→c− f

′(x) =
f ′(c) , ∀c ∈ (a, b). Hence f ′ is continuous on (a, b).


