MATH 2060 Mathematical Analysis II midterm suggested solution

Lee Man Chun

Q1 Let f be a Riemann integrable function defined on $[a, b]$.
(a) Show that the square function f^{2} is also integrable function on $[a, b]$.

Proof. Since $f \in R[a, b]$, there exists $M>0$ such that

$$
|f(x)| \leq M, \forall x \in[a, b] .
$$

Let $\epsilon>0$, there exists $\delta>0$ such that for all partition $P: a=x_{1}<x_{2}<\ldots<$ $x_{n+1}=b$ at which $\|P\|<\delta$, we have

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n} w_{i}(f) \Delta x_{i}<\frac{\epsilon}{2 M}
$$

where $w_{i}(f)=\sup \left\{|f(x)-f(y)|: x, y \in\left[x_{i}, x_{i+1}\right]\right\}$.
Noted that $w_{i}(f)=\sup \left\{|f(x)-f(y)|: x, y \in\left[x_{i}, x_{i+1}\right]\right\}=\sup \{f(x)-f(y): x, y \in$ $\left.\left[x_{i}, x_{i+1}\right]\right\}$. For all $x, y \in\left[x_{i}, x_{i+1}\right]$,

$$
\begin{aligned}
& f(x)-f(y) \leq \sup \left\{f(a)-f(b): a, b \in\left[x_{i}, x_{i+1}\right]\right\} \\
& f(y)-f(x) \leq \sup \left\{f(a)-f(b): a, b \in\left[x_{i}, x_{i+1}\right]\right\}
\end{aligned}
$$

Thus,

$$
\sup \left\{|f(x)-f(y)|: x, y \in\left[x_{i}, x_{i+1}\right]\right\} \leq \sup \left\{f(x)-f(y): x, y \in\left[x_{i}, x_{i+1}\right]\right\}
$$

On the other hand,

$$
f(x)-f(y) \leq \sup \left\{|f(a)-f(b)|: a, b \in\left[x_{i}, x_{i+1}\right]\right\} \quad \forall x, y \in\left[x_{i}, x_{i+1}\right] .
$$

So, $w_{i}(f)=\sup \left\{|f(x)-f(y)|: x, y \in\left[x_{i}, x_{i+1}\right]\right\}=\sup \left\{f(x)-f(y): x, y \in\left[x_{i}, x_{i+1}\right]\right\}$.

On each $\left[x_{i}, x_{i+1}\right]$, for all $x, y \in\left[x_{i}, x_{i+1}\right]$,

$$
\left|f^{2}(x)-f^{2}(y)\right| \leq|f(x)+f(y) \| f(x)-f(y)| \leq 2 M w_{i}(f)
$$

Thus, $w_{i}\left(f^{2}\right) \leq 2 M w_{i}(f)$ for all $i=1,2, \ldots n$. So there exists $\delta>0$ such that for all partition $P: a=x_{1}<x_{2}<\ldots<x_{n+1}=b$ at which $\|P\|<\delta$, we have

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right)=\sum_{i=1}^{n} w_{i}\left(f^{2}\right) \Delta x_{i}<2 M \sum_{i=1}^{n} w_{i}(f) \Delta x_{i}<\epsilon .
$$

(b) Show that if there exists $\delta>0$ such that $|f| \geq \delta$, then $\sqrt{|f|}$ is integrable.

Proof. Let $\epsilon>0$. Since $f \in R[a, b]$, there exists partition P such that

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n} w_{i}(f) \Delta x_{i}<2 \sqrt{\delta} \epsilon
$$

On each $\left[x_{i}, x_{i+1}\right]$, for any $x, y \in\left[x_{i}, x_{i+1}\right]$,

$$
|\sqrt{|f(x)|}-\sqrt{|f(y)|}| \leq \frac{|f(x)-f(y)|}{\sqrt{|f(y)|}+\sqrt{|f(x)|}} \leq \frac{1}{2 \sqrt{\delta}} w_{i}(f) .
$$

Thus,

$$
\begin{aligned}
U(\sqrt{|f|}, P)-L(\sqrt{|f|}, P) & =\sum_{i=1}^{n} w_{i}(\sqrt{|f|}) \Delta x_{i} \\
& <\frac{1}{2 \sqrt{\delta}} \sum_{i=1}^{n} w_{i}(f) \Delta x_{i}<\epsilon
\end{aligned}
$$

Q2 Determine whether the following improper integrals exist:
(a) $\int_{0}^{1} \sin x / \sqrt{x^{3}} d x$

Proof. The integral exists. We prove our claim using cauchy criterion. Let $\epsilon>0$, there exists $\delta=\frac{\epsilon^{2}}{4}>0$ such that for all $b>a$ and $a, b \in(0, \delta) \cap[0,1]$,

$$
\begin{aligned}
\left|\int_{a}^{b} \frac{\sin x}{\sqrt{x^{3}}} d x\right| & \leq \int_{a}^{b} \frac{1}{\sqrt{x}} d x \\
& =2 \sqrt{b}-2 \sqrt{a}<2 \sqrt{\delta}=\epsilon .
\end{aligned}
$$

The first inequality follows from the fact that $\sin x \leq x$ for all $x \geq 0$.
(b) $\int_{1}^{\infty} \log x / \sqrt{x^{5}} d x$

Proof. The integral exists. We prove our claim using comparsion test. Since $\log x \leq x$ for all $x \geq 1$, we have

$$
0 \leq \frac{\log x}{\sqrt{x^{5}}} \leq \frac{1}{\sqrt{x^{3}}}, \quad \forall x \geq 1
$$

It remains to check that $\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}}}$ exists. For all $p>1$,

$$
\int_{1}^{p} \frac{1}{\sqrt{x^{3}}}=2\left(1-\frac{1}{\sqrt{p}}\right) \rightarrow 2 \text { as } p \rightarrow \infty .
$$

Q3 Let f be a function defined on $(-c, c)$ for some $c>0$.
(a) If $|f(x)| \leq|x|^{\alpha}$ for some $\alpha>1$, show that $f^{\prime}(0)$ exists and find it.

Proof. Since $|f(x)| \leq|x|^{\alpha}$ for some $\alpha>1$, we have $f(0)=0$. Let $\epsilon>0$, there exists $\delta=\epsilon^{\frac{1}{\alpha-1}}>0$ such that for all $0<|x|<\delta$,

$$
\left|\frac{f(x)-f(0)}{x}\right|=\left|\frac{f(x)}{x}\right| \leq|x|^{\alpha-1}<\delta^{\alpha-1}=\epsilon
$$

Thus $f^{\prime}(0)$ exists and equals to 0.
(b) Does part (a) hold when $\alpha=1$?

Ans: No. Take $f(x)=|x|$. The assumption clearly holds. But f is not differentiable at $x=0$.

Q4 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Suppose that $a<b$ and $f^{\prime}(a)<f^{\prime}(b)$.
(a) Show that if $f^{\prime}(a)<\lambda<f^{\prime}(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\lambda$.

Proof. Define $g:[a, b] \rightarrow \mathbb{R}$ by $g(x)=f(x)-\lambda x . g$ is differentiable on $[a, b]$ and $g^{\prime}(x)=f^{\prime}(x)-\lambda$ for all $x \in[a, b]$. Since g is differentiable, so g is continuous. By Max-Min theorem, there exists $c \in[a, b]$ such that $g(c) \leq g(x)$ for all $x \in[a, b]$.
Since $g^{\prime}(a)<0$, there exists $\delta>0$ such that for all $x \in(a, a+\delta)$,

$$
\frac{g(x)-g(a)}{x-a}<0 \Longrightarrow g(x)<g(a)
$$

Similarly, there exists $\delta>0$ such that for all $x \in(b-\delta, b)$,

$$
\frac{g(b)-g(x)}{b-x}>0 \Longrightarrow g(x)<g(b)
$$

Thus $c \in(a, b)$. Argue as above, we can deduce that $g^{\prime}(c)$ can't be positive or negative. Thus, $g^{\prime}(c)=0$ which implies $f^{\prime}(c)=\lambda$.
(b) By using part (a) or otherwise, show that if $f^{\prime}(x)$ is increasing on (a, b), then f^{\prime} is continuous on (a, b).

Proof. Since f^{\prime} is increasing, $\lim _{x \rightarrow c+} f^{\prime}(x)$ and $\lim _{x \rightarrow c-} f^{\prime}(x)$ exists for all $c \in(a, b)$.
One may verify this using sequential criterion. Let $\left\{x_{n}\right\}$ be a sequence of real numbers such that $x_{n}>c$ and $\lim _{n} x_{n}=c$. Since f^{\prime} is increasing, $\left\{f^{\prime}\left(x_{n}\right)\right\}$ converges by monotone convergence theorem. Thus, the limit is unique. The existence of left hand limit is proved analogously.

By the monotonic increasing property of f^{\prime}, we have

$$
\lim _{x \rightarrow c+} f^{\prime}(x) \geq f^{\prime}(c) \geq \lim _{x \rightarrow c-} f^{\prime}(x) \text { for all } c \in(a, b)
$$

Assume $\lim _{x \rightarrow c+} f^{\prime}(x)=\alpha>f^{\prime}(c)$ for some $c \in(a, b)$. By the definition of limit, there exists $\delta>0$ such that for all $x \in(c, c+\delta)$,

$$
f^{\prime}(c)<\frac{f^{\prime}(c)+\alpha}{2}<f^{\prime}(x)
$$

By result of (a), there exists $d \in(c, c+\delta)$ such that

$$
f^{\prime}(d)=\frac{f^{\prime}(c)+\alpha}{2}
$$

Contradiction arised. So, $\lim _{x \rightarrow c+} f^{\prime}(x)=f^{\prime}(c), \forall c \in(a, b)$. Similarly, $\lim _{x \rightarrow c-} f^{\prime}(x)=$ $f^{\prime}(c), \forall c \in(a, b)$. Hence f^{\prime} is continuous on (a, b).

